
Designing Fault Tolerant
Global Arrays:

A Case Study with NWChem

Abhinav Vishnu
Bert de Jong,

and Huub van Dam

PNNL Booth, Super-Computing 2010

Introduction and Motivation

Hundreds of thousands of processing
elements are being combined

Mean Time Between Failures Reducing
significantly
Problem worse for Exascale systems

Current Fault Tolerance Approaches
Application driven checkpoint/restart
Application transparent checkpoint/restart
(BLCR)
Virtualization

Programming Models
Global Address Space (such as GA)

Focused on data, less about
processes

Message Passing (such as MPI)
Focused on processes

Presenter
Presentation Notes
Add the picture for Jaguar/Franklin and potentially other systems

Global Arrays
Global Arrays is a Partitioned Global
Address Space Programming Model
(PGAS)

Shared view of physically distributed
dense array
Provides one-sided communication
model
Used in wide variety of applications

Computational Chemistry
Subsurface modeling

ARMCI is the communication runtime
system

Provides one-sided communication
primitives
Scales on all leadership class
machines including BG/P, Cray XTs,
and clusters with InfiniBand
Continuing collaboration for Cray
Gemini and Bluewaters.

3

Physically distributed data

Global Address
Space

Focus: Task Based Execution

Computational Properties of NWChem
Independent Task Based Execution

Each Task
Does not care where it gets executed
Does not care on which node the input and output
data is
Data centric features

Important implications for fault tolerance
Data replication with consistency

Staggering approach for recovery
Continue with existing number of nodes

Consequence of data centric nature of algorithm

Hard fault with node failure
Other faults will considered in future

N1 N2 N3 N4

N4N1 N2 N3

Overall Design

Application

Data Redundancy/Fault Recovery Layer

Global Arrays

Fault Resilient
ARMCI

Fault
Resilient
Process
Manager Fault Tolerance

Management
Infrastructure

Fault Tolerant
Barrier

Non-MPI
TCGMSG

Non-MPI
message
passing

Network

Computer Science

Domain Science

A Sample Failure Scenario, and Questions

Interconnection Network

Power supply

Is Node 2 Dead?

What should the process manager do? What about the collective operations
and their semantics?

What about the one-sided operations
to the failed node?

What about the lost data and
computation?

Node 1 Node 2 Node 3 Node 4

Fault Resilient Process Manager

Adaptation from MVAPICH-OSU process manager
No dependency on MPI
Provides MPI style (not fault tolerant) collectives

Based on TCP/IP for bootstrapping
Generic enough for any machine which has at least Ethernet control
network

Ignores any TCP/IP errors
Layers rely on FTMI for higher accuracy fault information

Interconnection Network

Fault Resilient ARMCI

Expected Data Redundancy Model
Staggered data model

Simultaneous updates may result in
both copies in an inconsistent state
Each copy should be updated one by
one
Every Write based Primitive (Put/Acc)
should be Fenced

WaitProc – Wait for all non-
blocking operations to complete
Fence – Ensure all writes to a
process have finished

N1 N2 N3 N4

Primary Copy

Shadow Copy

N4N1 N2 N3

Data

Data

Fault Resilient ARMCI – Communication
Protocols

Multiple phases of communication in ARMCI
Put/Get/Acc are implemented as a combination of these phases
On Failures

Either process/thread may be waiting for data, while other process
is dead
Use Timeout based FTMI to detect failures
If FTMI detects failure, return error, if necessary

Data consistency is best known to the application

Data ServerProcess

MPI Fault Tolerance

Most current MPI implementations choose not to be fault tolerant
Fault tolerance implemented using checkpoint/restart
Implicit expectation to restart on failures

Our model performs continued execution

We have made part of MPI fault tolerant
Barrier is fault tolerant
Send/receive before faults will be executed successfully
High impact for applications which use MPI and Global Arrays
together
Other data moving collectives not fault tolerant

May require a complete re-thinking process

Case Study Using NWChem

Rely on FTMI to obtain failed
node information

Redundant data storage in
memory

Process state information
stored

Buddy process for fault
recovery

Application

Data Redundancy/Fault
Recovery Layer

Data Redundancy using Global Arrays

Data becomes unavailable on
node failure(s)

Alternative data source
therefore needed

“S” is the a suitable process
shift to ensure safe keeping
of data

Typically allocation using
buddy node mechanism

Availability of data managed
through info from FTMI
Suitable data access
integrated in Get, Put, and
Acc operations

Operations are fault tolerant

12

Local data

Primary GA

Shadow GA

Proc
I

Proc
J

Proc
J+S*

Process State Information

Each process executes one or more tasks
Each task progresses to completion through a sequence of states

Not Started
Computing
Updating primary copy
Updating shadow copy
Done

Keep task number and state of each process in a table to inform the
recovery in case of a fault
The task state information is managed within the infrastructure layer

13

Fault Recovery Algorithm

Every process has a buddy
process assigned

The buddy process is
responsible for recovery

The fault recovery actions
depend on the state of the failed
task

Integrated in load balancing
routine to make recovery work
transparent to the application
implementation

14

Working
1. Re-issue task

Updating primary copy
1. Mark primary blocks corrupt
2. Re-issue task

Updating shadow copy
1. Mark shadow blocks

corrupt

Done

Code example

Orginal (T) of CCSD(T)
Empt4 = 0.0
Empt5 = 0.0

Numtasks = nvirt*nocc

Next = nxtask()

Do while (next.le.numtasks)
a = next/nocc+1
j = next – (a-1)*nocc

call ga_get(g_in,1,nocc,a,a,d,len)

... Do work ...

Empt4 = Empt4 + term4
Empt5 = Empt5 + term5

next = nxtask()
Enddo

Call ga_gdop(Empt4)
Call ga_gdop(Empt5)

Fault Tolerant (T) of CCSD(T)
Call sft_create(g_empt4,1,nproc)
Call sft_create(g_empt5,1,nproc)
Call sft_zero(g_empt4)
Call sft_zero(g_empt5)

Numtasks = nvirt*nocc

Next = sft_nxtask(access_map)

Do while (next.le.numtasks)
a = next/nocc+1
j = next – (a-1)*nocc

call sft_get(g_in,1,nocc,a,a,d,len)

... Do work ...

call sft_map_init(map)
call sft_map_add(map,g_empt4,term4)
call sft_map_add(map,g_empt5,term5)
call sft_map_acc(map)

next = sft_nxtask(access_map)
Enddo

Call ga_sync
Empt4 = 0.0
Empt5 = 0.0
Do ip = 1, nproc

call sft_get(g_empt4,1,1,ip,ip,term4)
call sft_get(g_empt5,1,1,ip,ip,term5)
Empt4 = Empt4 + term4
Empt5 = Empt5 + term5

Enddo
Call sft_destroy(g_empt4)
Call sft_destroy(g_empt5)

15

Funding and External Collaborations

Funding Source – Extreme Scale Computing Initiative, Laboratory directed
Research and Development, PNNL
BlueWaters Plan:

IBM LAPI team for Fault Tolerant Infrastructure
Initial implementation with LAPI/IB BlueWaters

Cray Plan:
Started initial collaboration with Gemini team (Ryan Olson)
Initial work on ARMCI/Portals/Seastar has started

Started Collaboration with Coordinated Infrastructure for Fault Tolerant
Systems (CIFTS)

DOE project for design and implementation of Fault tolerance Backplane
for multiple system components

Job scheduler, File System ….
Joint Effort between multiple institutes including ANL, OSU, LBNL,
ORNL, Indiana and UTK
CIFTS plans to leverage the Fault Detection infrastructure provided by
FTMI

	Designing Fault Tolerant �Global Arrays:�A Case Study with NWChem
	Introduction and Motivation
	Global Arrays
	Focus: Task Based Execution
	Overall Design
	A Sample Failure Scenario, and Questions
	Fault Resilient Process Manager
	Fault Resilient ARMCI
	Fault Resilient ARMCI – Communication Protocols
	MPI Fault Tolerance
	Case Study Using NWChem
	Data Redundancy using Global Arrays
	Process State Information
	Fault Recovery Algorithm
	Code example
	Funding and External Collaborations

